Inline equations like \(y = x^2\)
New line equations like:
\[e^{i\pi} + 1 = 0\]Online images like
%matplotlib notebook
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-10, 10)
y = np.sin(x)
plt.figure()
plt.plot(x, y)
<IPython.core.display.Javascript object>
[<matplotlib.lines.Line2D at 0x1b4c4ae0518>]
Derivative | Accuracy | −3 | −2 | −1 | 0 | 1 | 2 | 3 |
---|---|---|---|---|---|---|---|---|
1 | 2 | −1/2 | 0 | 1/2 | ||||
4 | 1/12 | −2/3 | 0 | 2/3 | −1/12 | |||
6 | −1/60 | 3/20 | −3/4 | 0 | 3/4 | −3/20 | 1/60 | |
2 | 2 | 1 | −2 | 1 | ||||
4 | −1/12 | 4/3 | −5/2 | 4/3 | −1/12 | |||
6 | 1/90 | −3/20 | 3/2 | −49/18 | 3/2 | −3/20 | 1/90 | |
3 | 2 | −1/2 | 1 | 0 | −1 | 1/2 | ||
4 | 1/8 | −1 | 13/8 | 0 | −13/8 | 1 | −1/8 |
Very interested in your comments but still figuring out the most suited approach to this. For now, feel free to send me an email